基于spark的抖音数据分析及推荐可视化系统-毕设

7/22/2025 pythonscaladjango

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

抖音数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、hive3.1.2、mysql8.0.41、jdk8

# 开发语言

python

# 开发流程

数据上传(hdfs)->数据处理(spark)->处理结果(hive)->数据分析(spark)->数据存储(mysql)->后端(django)->前端(html+js+css)

# 可视化图表

2025-07-22_214334

2025-07-22_215324

2025-07-22_215343

2025-07-22_215348

2025-07-22_215401

2025-07-22_215407

2025-07-22_215414

2025-07-22_215420

2025-07-22_215424

2025-07-22_215434

2025-07-22_215441

2025-07-22_215447

2025-07-22_215453

2025-07-22_215507

2025-07-22_215517

# 操作步骤

# python安装包


pip3 install django==4.2.11 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install djangorestframework==3.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install django-simpleui==2025.1.13 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install DBUtils==1.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mysqlclient==2.2.7 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyhive==0.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift==0.21.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scikit-learn==1.3.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift-sasl==0.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple

1
2
3
4
5
6
7
8
9
10
11

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-spark-douyin-analysis-recommend-system" 整个文件夹 到 "/data/jobs/project/" 目录

1
2
3
4
5
6

# 创建MySQL表


cd /data/jobs/project/project-spark-douyin-analysis-recommend-system/

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < dyinfo.sql

1
2
3
4
5
6
7

# 执行sparkFir.py


cd /data/jobs/project/project-spark-douyin-analysis-recommend-system/

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
spark/sparkFir.py

1
2
3
4
5
6
7
8
9

# 执行sparkAna.py


cd /data/jobs/project/project-spark-douyin-analysis-recommend-system/

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
spark/sparkAna.py

1
2
3
4
5
6
7
8
9

# 启动可视化


cd /data/jobs/project/project-spark-douyin-analysis-recommend-system/

python3 manage.py runserver master:5173
# 用户名: admins
# 密码: admins

# 后台用户名: admins
# 后台密码: admins

1
2
3
4
5
6
7
8
9
10

# 注意


点赞热度预测测试数据:
视频时间:100  收藏数量:1000  评论数量:3000

1
2
3
4
Last Updated: 7/30/2025, 3:06:44 PM