酒店预订数据分析及预测可视化

7/19/2025 pythonscalaflasksqoop

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

酒店预订数据数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、hive3.1.2、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、sqoop1.4.7

# 开发语言

python、Scala

# 开发流程

数据上传(hdfs)->数据分析(hive)->机器学习(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-07-19_215155

2025-07-19_215206

2025-07-19_215211

2025-07-19_215216

2025-07-19_215223

2025-07-19_215232

2025-07-19_215238

2025-07-19_215245

2025-07-19_215250

2025-07-19_215255

2025-07-19_215302

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

1
2
3
4
5
6
7

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 解压 "data" 目录下的 "原始数据.7z" 文件
# 上传 "data" 目录下的 "hotel_bookings.csv" 文件 到 "/data/jobs/project/" 目录
# 上传 "数据清洗" 目录下的 "data_clean.py" 文件 到 "/data/jobs/project/" 目录

python3 data_clean.py

# 验证结果
head -5 cleaned.csv
head -5 ml_data.csv

1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -rm -r /data/*
hdfs dfs -mkdir -p /data/input/hive/
hdfs dfs -mkdir -p /data/input/ml_data/
hdfs dfs -put -f cleaned.csv /data/input/hive/
hdfs dfs -put -f ml_data.csv /data/input/ml_data/
hdfs dfs -ls /data/input/hive/
hdfs dfs -ls /data/input/ml_data/

1
2
3
4
5
6
7
8
9
10
11

# hive数据分析


cd /data/jobs/project/

# 上传 "hive分析" 目录下的 "hive.sql" 文件 到 "/data/jobs/project/" 目录

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

# 快速执行hive.sql
hive -v -f hive.sql

1
2
3
4
5
6
7
8
9
10
11

# 创建MySQL表


cd /data/jobs/project/

# 上传 "mysql" 目录下的 "mysql.sql" 文件 到 "/data/jobs/project/" 目录

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql.sql

1
2
3
4
5
6
7
8
9

# 数据导入MySQL


cd /data/jobs/project/

# 上传 "mysql" 目录下的 "sqoop.sh" 文件 到 "/data/jobs/project/" 目录

sed -i 's/\r//g' sqoop.sh
bash sqoop.sh

1
2
3
4
5
6
7
8

# spark预测


cd /data/jobs/project/

# 对 "spark_ml" 目录下的项目 "spark-job" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "spark-job/target/" 目录下的 "spark-job-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

spark-submit \
--master local[*] \
--class com.exam.SparkMLApp \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/ml_data/

1
2
3
4
5
6
7
8
9
10
11
12
13

# 启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# 先执行 data_extractor.py 创建用户表
python3 data_extractor.py

# windows本地运行: python app.py
python3 app.py pro
# 用户名: admin
# 密码: admin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Last Updated: 7/30/2025, 3:06:44 PM