基于spark的基于可穿戴设备运动数据预测_hive数据库

7/18/2025 pythonscalaflask

可视化效果视频 (opens new window)

# 项目概况

spark_handle_hive (opens new window)

# 数据类型

可穿戴设备运动数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、hive3.1.2、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

# 开发语言

python、Scala

# 开发流程

数据上传(hdfs)->数据分析(spark)->机器学习(spark)->数据存储(hive)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-07-17_194741

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install impyla -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-restful==0.3.10 -i https://mirrors.aliyun.com/pypi/simple/

1
2
3
4
5
6
7
8

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "wearable_sensor_data.csv" 文件/文件夹 到 "/data/jobs/project/" 目录

1
2
3
4
5
6

# 上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f wearable_sensor_data.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8

# hive存储建表


cd /data/jobs/project/

# 上传 "数据分析" 目录下的 "hive.sql" 文件 到 "/data/jobs/project/" 目录

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

# 快速执行hive.sql
hive -v -f hive.sql

# use hdfs;
# SELECT * FROM health_predict limit 10;
# SELECT * FROM ads_activity_avg_metrics limit 10;
# SELECT * FROM ads_heart_rate_activity_frequency limit 10;
# SELECT * FROM ads_activity_type_level_percentage limit 10;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

# 程序打包


cd /data/jobs/project/

# 对 "project-spark-sport-device-data-predict" 目录下的项目 "project-spark-sport-device-data-predict" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true

# 上传 "project-spark-sport-device-data-predict/target/" 目录下的 "project-spark-sport-device-data-predict-jar-with-dependencies.jar" 文件 到 "/data/jobs/project/" 目录

1
2
3
4
5
6
7
8

# spark数据分析


cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.SparkAnalysis \
/data/jobs/project/project-spark-sport-device-data-predict-jar-with-dependencies.jar /data/input/

1
2
3
4
5
6
7
8

# 机器学习


cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.Main \
/data/jobs/project/project-spark-sport-device-data-predict-jar-with-dependencies.jar /data/input/

1
2
3
4
5
6
7
8

# 启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# windows本地运行: python app.py
python3 app.py pro

1
2
3
4
5
6
7
8
9
Last Updated: 7/30/2025, 3:06:44 PM