基于pypsark的蛋壳房租价格预测

7/14/2025 pythonscalaflask

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

蛋壳房屋价格数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

# 开发语言

python

# 开发流程

数据上传(hdfs)->数据清洗(spark)->机器学习(spark)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-07-15_200438

2025-07-15_200445

2025-07-15_200501

2025-07-15_200511

2025-07-15_200515

2025-07-15_200521

2025-07-15_200536

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

1
2
3
4
5
6
7

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 创建MySQL库


CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

1
2
3

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "所有" 文件 到 "/data/jobs/project/" 目录

1
2
3
4
5
6

# 上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put bj_danke_1.csv /data/input/
hdfs dfs -put bj_danke_2.csv /data/input/
hdfs dfs -put bj_danke_3.csv /data/input/
hdfs dfs -put bj_danke_4.csv /data/input/
hdfs dfs -put bj_danke_5.csv /data/input/
hdfs dfs -put bj_danke_6.csv /data/input/
hdfs dfs -put bj_danke_7.csv /data/input/
hdfs dfs -put bj_danke_8.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

# spark数据清洗


cd /data/jobs/project/

# 上传 "数据清洗" 目录下的 "data_clean.py" 文件 到 "/data/jobs/project/" 目录

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
data_clean.py /data/input/ /data/output/

1
2
3
4
5
6
7
8
9
10
11

# spark数据分析


cd /data/jobs/project/

# 上传 "数据分析" 目录下的 "data_analysis.py" 文件 到 "/data/jobs/project/" 目录

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
data_analysis.py /data/output/

1
2
3
4
5
6
7
8
9
10
11

# 机器学习


cd /data/jobs/project/

# 上传 "机器学习" 目录下的 "ml.py" 文件 到 "/data/jobs/project/" 目录

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
ml.py /data/output/

1
2
3
4
5
6
7
8
9
10
11

# 启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# 先执行 data_extractor.py 创建用户表
python3 data_extractor.py

# windows本地运行: python app.py
python3 app.py pro
# 用户名: admin
# 密码: admin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Last Updated: 7/30/2025, 3:06:44 PM