基于pyspark的双十一美妆数据分析及可视化

7/13/2025 pythonflask

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

双十一淘宝美妆订单数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

# 开发语言

python

# 开发流程

数据清洗(python)->数据上传(hdfs)->数据清洗(mapreduce)->数据分析(hive)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-07-13_161149

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pyecharts==2.0.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install openpyxl==3.1.5 -i https://mirrors.aliyun.com/pypi/simple/

1
2
3
4
5
6
7
8

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 创建MySQL库


CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

1
2
3

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-cosmetics-analysis" 整个文件夹 到 "/data/jobs/project/" 目录

cd /data/jobs/project/project-cosmetics-analysis/
python3 data_clean.py

ls -l output/

1
2
3
4
5
6
7
8
9
10
11

# 上传文件到hdfs


cd /data/jobs/project/project-cosmetics-analysis/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put output/dim_product.csv /data/input/
hdfs dfs -put output/fact_order.csv /data/input/
hdfs dfs -put output/result.csv /data/input/
hdfs dfs -put output/result_order.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8
9
10
11

# spark数据分析


cd /data/jobs/project/project-cosmetics-analysis/

spark-submit \
--master local[*] \
--jars /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
--driver-class-path /export/software/spark-3.1.2-bin-hadoop3.2/jars/mysql-connector-j-8.0.33.jar \
pyspark/pyspark_app.py /data/input

1
2
3
4
5
6
7
8
9

# 启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# windows本地运行: python app.py
python3 app.py pro

1
2
3
4
5
6
7
8
9
Last Updated: 7/30/2025, 3:06:44 PM