基于hadoop的豆瓣电影分析与推荐可视化系统
舟率率 7/11/2025 pythonscalaspringbootsqoopjavavue
# 项目概况
# 数据类型
kaggle的MovieLens数据 (opens new window)
# 开发环境
centos7
# 软件版本
python3.8.18、hadoop3.2.0、hive3.1.2、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、sqoop1.4.7
# 开发语言
python、Scala
# 开发流程
数据清洗(python)->数据上传(hdfs)->数据分析(hive)->机器学习(spark)->数据存储(mysql)->后端(springboot)->前端(vue)
# 可视化图表
# 操作步骤
# python安装包
pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install numpy==1.24.4 -i https://mirrors.aliyun.com/pypi/simple/
1
2
3
4
2
3
4
# 启动MySQL
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456
1
2
3
4
5
6
7
8
9
2
3
4
5
6
7
8
9
# 启动Hadoop
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh
1
2
3
4
5
2
3
4
5
# 启动hive
# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore
# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2
# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# 准备目录
mkdir -p /data/jobs/project/
cd /data/jobs/project/
# 提前下载好 "archive.zip" 并完成解压
# 上传 "archive" 目录下的 "所有" 文件 到 "/data/jobs/project/" 目录
# 上传 "数据清洗" 目录下的 "data_clean.py" 文件 到 "/data/jobs/project/" 目录
# genome_scores.csv
# genome_tags.csv
# link.csv
# movie.csv
# rating.csv
# tag.csv
python3 data_clean.py /data/jobs/project
ls -l cleaned_*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# 上传文件到hdfs
cd /data/jobs/project/
hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -mkdir /data/input/cleaned_genome_scores/
hdfs dfs -mkdir /data/input/cleaned_genome_tags/
hdfs dfs -mkdir /data/input/cleaned_movie_genre_flat/
hdfs dfs -mkdir /data/input/cleaned_movie_title/
hdfs dfs -mkdir /data/input/cleaned_rating/
hdfs dfs -mkdir /data/input/cleaned_tag/
hdfs dfs -put cleaned_genome_scores.csv /data/input/cleaned_genome_scores/
hdfs dfs -put cleaned_genome_tags.csv /data/input/cleaned_genome_tags/
hdfs dfs -put cleaned_movie_genre_flat.csv /data/input/cleaned_movie_genre_flat/
hdfs dfs -put cleaned_movie_title.csv /data/input/cleaned_movie_title/
hdfs dfs -put cleaned_rating.csv /data/input/cleaned_rating/
hdfs dfs -put cleaned_tag.csv /data/input/cleaned_tag/
hdfs dfs -ls /data/input/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# hive数据分析
cd /data/jobs/project/
# 上传 "数据分析" 目录下的 "hive.sql" 文件 到 "/data/jobs/project/" 目录
# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root
# 快速执行hive.sql
hive -v -f hive.sql
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11
# 创建MySQL表
cd /data/jobs/project/
# 上传 "mysql" 目录下的 "mysql.sql" 文件 到 "/data/jobs/project/" 目录
# 上传 "mysql" 目录下的 "sqoop.sh" 文件 到 "/data/jobs/project/" 目录
# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql.sql
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# 数据导入MySQL
cd /data/jobs/project/
sed -i 's/\r//g' sqoop.sh
bash sqoop.sh
1
2
3
4
5
6
2
3
4
5
6
# 程序打包
cd /data/jobs/project/
# 对 "project-hadoop-douban-movies-recommend-system" 目录下的项目 "project-hadoop-douban-movies-recommend-system" 进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true
# 上传 "project-hadoop-douban-movies-recommend-system/target/" 目录下的 "spark-job.jar" 文件 到 "/data/jobs/project/" 目录
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# spark机器学习
cd /data/jobs/project/
# 上传 "project-hadoop-douban-movies-recommend-system/target/" 目录下的 "spark-job.jar" 文件 到 "/data/jobs/project/" 目录
spark-submit \
--master local[*] \
--driver-memory 4g \
--executor-memory 4g \
--executor-cores 4 \
--class org.example.douban.movies.analysis.MovieRecommendApp \
/data/jobs/project/spark-job.jar /data/input/cleaned_rating/ /data/input/cleaned_movie_title/
1
2
3
4
5
6
7
8
9
10
11
12
13
2
3
4
5
6
7
8
9
10
11
12
13
# 启动可视化
# 安装node
# 启动springboot
# 入口类: org.example.Application
# 启动前端
npm install --registry=https://registry.npmmirror.com
npm run dev
# 登录用户: root
# 登录密码: 123456
1
2
3
4
5
6
7
8
9
10
11
2
3
4
5
6
7
8
9
10
11