基于pyspark和hive的美食数据分析可视化系统_毕设
舟率率 6/26/2025 pythonscaladjango
# 项目概况
# 数据类型
美食数据
# 开发环境
centos7
# 软件版本
python3.8.18、hadoop3.2.0、spark3.1.2、hive3.1.2、mysql8.0.41、jdk8
# 开发语言
python
# 开发流程
数据上传(hdfs)->数据处理(spark)->处理结果(hive)->数据分析(spark)->数据存储(mysql)->后端(django)->前端(html+js+css)
# 可视化图表
# 操作步骤
# python安装包
# windows系统下安装tensorflow==2.13.0版本
# pip3 install tensorflow==2.13.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install django==4.2.11 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mysqlclient==2.2.7 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyhive==0.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift==0.21.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift-sasl==0.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scikit-learn==1.3.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install tensorflow==2.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install urllib3==1.26.15 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install matplotlib==3.7.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install wordcloud==1.9.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2
3
4
5
6
7
8
9
10
11
12
13
14
# 启动Hadoop
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh
1
2
3
4
5
2
3
4
5
# 启动MySQL
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
mysql -uroot -p123456
1
2
3
4
5
6
2
3
4
5
6
# 启动hive
# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore
# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2
# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root
1
2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10
# 上传代码及文件
mkdir -p /data/jobs/project/
cd /data/jobs/project/
# 解压 "static/assets/css/" 目录下的 "lib.7z" 压缩包,使用 "解压到当前位置"
# 解压 "static/assets/js/" 目录下的 "lib.7z" 压缩包,使用 "解压到当前位置"
# 上传整个project-spark-food-data-analysis-system文件夹
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
# MySQL建表
cd /data/jobs/project/project-spark-food-data-analysis-system/
mysql -u root -p < fooddata.sql
1
2
3
4
5
2
3
4
5
# 执行sparkFir.py
cd /data/jobs/project/project-spark-food-data-analysis-system/
spark-submit \
--master local[*] \
spark/sparkFir.py
1
2
3
4
5
6
7
2
3
4
5
6
7
# 执行sparkAna.py
cd /data/jobs/project/project-spark-food-data-analysis-system/
spark-submit \
--master local[*] \
spark/sparkAna.py
1
2
3
4
5
6
7
2
3
4
5
6
7
# 启动可视化
cd /data/jobs/project/project-spark-food-data-analysis-system/
python3 manage.py runserver master:5173
# 用户名:userOne
# 密码:123456
# 预测功能中的查询条件要全部输入,否则报错
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8