基于pyspark和hive的美食数据分析可视化系统_毕设

6/26/2025 pythonscaladjango

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

美食数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、hive3.1.2、mysql8.0.41、jdk8

# 开发语言

python

# 开发流程

数据上传(hdfs)->数据处理(spark)->处理结果(hive)->数据分析(spark)->数据存储(mysql)->后端(django)->前端(html+js+css)

# 可视化图表

2025-06-27_000850

2025-06-27_000905

2025-06-27_000913

2025-06-27_000919

2025-06-27_000931

2025-06-27_000942

2025-06-27_000949

2025-06-27_000955

2025-06-27_001017

# 操作步骤

# python安装包


# windows系统下安装tensorflow==2.13.0版本
# pip3 install tensorflow==2.13.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install django==4.2.11 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mysqlclient==2.2.7 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install pyhive==0.7.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift==0.21.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install thrift-sasl==0.4.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scikit-learn==1.3.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install tensorflow==2.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install urllib3==1.26.15 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install matplotlib==3.7.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install wordcloud==1.9.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
mysql -uroot -p123456

1
2
3
4
5
6

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 上传代码及文件


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 解压 "static/assets/css/" 目录下的 "lib.7z" 压缩包,使用 "解压到当前位置"
# 解压 "static/assets/js/" 目录下的 "lib.7z" 压缩包,使用 "解压到当前位置"
# 上传整个project-spark-food-data-analysis-system文件夹

1
2
3
4
5
6
7
8

# MySQL建表


cd /data/jobs/project/project-spark-food-data-analysis-system/

mysql -u root -p < fooddata.sql

1
2
3
4
5

# 执行sparkFir.py


cd /data/jobs/project/project-spark-food-data-analysis-system/

spark-submit \
--master local[*] \
spark/sparkFir.py

1
2
3
4
5
6
7

# 执行sparkAna.py


cd /data/jobs/project/project-spark-food-data-analysis-system/

spark-submit \
--master local[*] \
spark/sparkAna.py

1
2
3
4
5
6
7

# 启动可视化


cd /data/jobs/project/project-spark-food-data-analysis-system/

python3 manage.py runserver master:5173
# 用户名:userOne
# 密码:123456
# 预测功能中的查询条件要全部输入,否则报错

1
2
3
4
5
6
7
8
Last Updated: 7/30/2025, 3:06:44 PM