基于spark的银行客户流失预测分析可视化

5/24/2025 pythonscalaflask

可视化效果视频 (opens new window)

# 项目概况

master (opens new window)

# 数据类型

kaggle银行客户流失数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

# 开发语言

python、Scala

# 开发流程

数据预处理(python)->数据上传(hdfs)->数据探索(spark)->特征处理(spark)->模型训练(spark)->模型预测(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-05-25_001625

2025-05-25_001631

2025-05-25_001636

2025-05-25_001641

2025-05-25_001647

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/

1
2
3
4
5
6

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# MySQL建库


# mysql -uroot -p123456
CREATE DATABASE IF NOT EXISTS echarts CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

1
2
3
4

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "Churn_Modelling.csv" 文件
# 上传 "数据预处理" 目录下的 "data_clean.py" 文件

1
2
3
4
5
6
7

# 数据预处理


cd /data/jobs/project/

python3 data_clean.py /data/jobs/project/

# 生成 "data_clean.csv" 文件
head -5 data_clean.csv

1
2
3
4
5
6
7
8

# 上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f data_clean.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8

# spark数据探索


cd /data/jobs/project/

# 上传 "spark-job-jar-with-dependencies.jar" 文件
# jar 文件可以用打包命令生成: mvn clean package -Dmaven.test.skip=true

# 相关性分析结果写入MySQL

spark-submit \
--master local[*] \
--class com.exam.SparkAnalysisAllCorr \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/

# 每列频次统计结果写入MySQL

spark-submit \
--master local[*] \
--class com.exam.SparkAnalysisFrequency \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/

# Balance和EstimatedSalary统计信息结果写入MySQL

spark-submit \
--master local[*] \
--class com.exam.SparkAnalysisBalanceSalary \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/

# 相关列分布信息结果写入MySQL

spark-submit \
--master local[*] \
--class com.exam.SparkAnalysisHistograms \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

# spark机器学习


cd /data/jobs/project/

# 模型训练,预测结果写入MySQL

spark-submit \
--master local[*] \
--class com.exam.SparkMLApp \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/

1
2
3
4
5
6
7
8
9
10

# 启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹

# windows本地运行: python app.py
python3 app.py pro

1
2
3
4
5
6
7
8
9
Last Updated: 7/4/2025, 1:59:06 PM