基于spark和hive数仓的水果价格数据分析及预测系统_网页导航

5/14/2025 pythonscalamapreduceflasksqoopjava

可视化效果视频 (opens new window)

# 项目概况

web_site (opens new window)

# 数据类型

新发地水果价格数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、hive3.1.2、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、sqoop1.4.7

# 开发语言

python、Scala、Java

# 开发流程

数据预处理(python)->数据上传(hdfs)->数据清洗(mapreduce)->数据分析(hive)->数据预测(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-05-14_233034

2025-05-14_233041

2025-05-14_233047

2025-05-14_233054

2025-05-14_233101

2025-05-14_233107

2025-05-14_233210

2025-05-14_233218

# 操作步骤

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 启动hive


# 在第一个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service metastore

# 在第二个窗口中,执行后等待10-20秒
/export/software/apache-hive-3.1.2-bin/bin/hive --service hiveserver2

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

1
2
3
4
5
6
7
8
9
10

metastore

hiveserver2

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-spark-farm-product-price-analysis-dw" 整个文件夹

1
2
3
4
5
6

# 上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f project-spark-farm-product-price-analysis-dw/data/data.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8

# 数据清洗


# 程序打包 如果在win上已经打好包,可以直接上传到 "/data/jobs/project/" 目录
cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/数据清洗/mapreduce-job/
mvn clean package -Dmaven.test.skip=true
# 复制到 "/data/jobs/project/" 目录
cp target/mapreduce-job-jar-with-dependencies.jar /data/jobs/project/mapreduce-job-jar-with-dependencies.jar

# 执行数据清洗的mapreduce任务
cd /data/jobs/project/

hadoop jar mapreduce-job-jar-with-dependencies.jar /data/input/ /data/agric_product/raw/

1
2
3
4
5
6
7
8
9
10
11
12

# hive数据分析


cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/hive分析/

# 连接进入hive终端命令如下:
# /export/software/apache-hive-3.1.2-bin/bin/beeline -u jdbc:hive2://master:10000 -n root

# 快速执行hive.sql
hive -v -f hive.sql

1
2
3
4
5
6
7
8
9

# 创建MySQL表


cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/mysql/

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql.sql

1
2
3
4
5
6
7

# 数据导入MySQL


cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/hive分析/

sed -i 's/\r//g' sqoop.sh
bash sqoop.sh

1
2
3
4
5
6

# spark预测价格


# 程序打包 如果在win上已经打好包,可以直接上传到 "/data/jobs/project/" 目录
cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/spark_ml/spark-job/
mvn clean package -Dmaven.test.skip=true
# 复制到 "/data/jobs/project/" 目录
cp target/spark-job-jar-with-dependencies.jar /data/jobs/project/spark-job-jar-with-dependencies.jar

cd /data/jobs/project/

spark-submit \
--master local[*] \
--class com.exam.SparkMLApp \
/data/jobs/project/spark-job-jar-with-dependencies.jar /data/input/

1
2
3
4
5
6
7
8
9
10
11
12
13
14

# 启动可视化


cd /data/jobs/project/project-spark-farm-product-price-analysis-dw/可视化/

# 先执行 data_extractor.py 创建用户表
python3 data_extractor.py

# windows本地运行: python3 app.py 
python3 app.py pro

1
2
3
4
5
6
7
8
9
Last Updated: 5/15/2025, 8:57:04 AM