基于spark的超市商品数据分析可视化系统

5/13/2025 pythonscalaflask

可视化效果视频 (opens new window)

# 项目概况

no_ml (opens new window)

# 数据类型

超市商品销售数据

# 开发环境

centos7

# 软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

# 开发语言

python、Scala

# 开发流程

数据上传(hdfs)->数据清洗(spark)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

# 可视化图表

2025-05-13_221901

2025-05-13_221908

2025-05-13_230822

2025-05-13_230828

2025-05-13_230836

2025-05-13_230843

2025-05-13_230849

2025-05-13_230855

2025-05-13_230901

2025-05-13_230908

2025-05-13_230915

# 操作步骤

# python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/

1
2
3
4
5
6

# 启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

1
2
3
4
5
6
7
8
9

# 启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

1
2
3
4
5

hadoop

# 准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "project-spark-market-data-analysis" 整个文件夹

1
2
3
4
5
6

# 上传文件到hdfs


cd /data/jobs/project/project-spark-market-data-analysis/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f data/market_sale_order.csv /data/input/
hdfs dfs -put -f data/market_sale_persons.csv /data/input/
hdfs dfs -put -f data/market_sale_return.csv /data/input/
hdfs dfs -ls /data/input/

1
2
3
4
5
6
7
8
9
10

# 程序打包


cd /data/jobs/project/project-spark-market-data-analysis/
mvn clean package -Dmaven.test.skip=true

cp target/project-spark-market-data-analysis-jar-with-dependencies.jar /data/jobs/project/

1
2
3
4
5
6

# 创建MySQL表


cd /data/jobs/project/project-spark-market-data-analysis/

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql/mysql.sql

1
2
3
4
5
6
7

# spark数据清洗


cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.SparkClean \
/data/jobs/project/project-spark-market-data-analysis-jar-with-dependencies.jar /data/input/market_sale_order.csv /data/input/market_sale_return.csv /data/input/market_sale_persons.csv /data/output/

1
2
3
4
5
6
7
8

# spark数据分析


cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.demo.SparkAnalysis \
/data/jobs/project/project-spark-market-data-analysis-jar-with-dependencies.jar /data/output/

1
2
3
4
5
6
7
8

# 启动可视化


yes | cp -r /data/jobs/project/project-spark-market-data-analysis/可视化 /data/jobs/project/myapp
cd /data/jobs/project/myapp/

# windows本地运行: python3 app.py 
python3 app.py pro

1
2
3
4
5
6
7
Last Updated: 5/15/2025, 5:20:55 AM